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Abstract  

Rip currents pose significant hazards to beachgoers, often catching untrained individuals 

unaware and leading to dangerous situations. The research aims to develop an effective method 

for detecting rip currents using artificial intelligence, thereby enhancing beach safety. The 

method involves training a binary classification model on aerial images of the ocean, 

categorizing them into those with rip currents and without rip currents. Data augmentations 

such as cutting, rotating, and flipping the image are employed so that the generalization ability 

of our model could be enhanced. We utilized Multi-Layer Perceptron classifiers, achieving a 

accuracy of 73.9% initially on testing set, and an accuracy of 92.5% after applying a 

confidence threshold. The integration of the model with a Tello Talent Robomaster TT drone 

introduced significant flexibility and efficiency, with an average processing time of 3.09 

milliseconds per 1000 images. With a True Positive Rate (TNR) of 93.06% and True Negative 

Rate (TNR) of 91.10%, the model also demonstrated relatively high performance. This 

innovative approach of integrating AI with rip current proves to be flexible, efficient, and 

effective making a significant contribution to beach safety. 

Key words: Rip current; Artificial intelligence; Binary classification; Beach safety; 

Artificial neural network; Marine environmental monitoring  
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Identification of Rip Current Images Using Artificial Intelligence  

Rip currents are powerful, narrow channels of fast-moving water running from a beach 

back to the open ocean, sea, or lake, usually sustains for several minutes. Rip current can move 

up to 8 feet per second (more than 2 meters per second), which is much faster than even 

Olympic swimmers. They are usually caused by the fragmented tides created by radiation 

stress in water waves. The diagram in Figure 1 illustrates the anatomy of a rip current.   

 

Figure 1  

Anatomy of the rip current 

 

Note. This image was acquired from the website of National Oceanic and Atmospheric 

Administration (NOAA). (Rip Currents, 2023)  

  



 

 

Hazard of Rip Currents  

Rip currents present a significant danger due to the general public’s lack of awareness or 

inability to recognize these potentially lethal oceanic phenomena, often resulting in hazardous 

situations for unsuspecting swimmers. Typically, surfers often show themselves as calm areas 

in a sea of waves and this may deceive people into thinking that these are safe places. In 

essence, however, these tranquil zones are the most dangerous where strong currents create 

significant hazard. The untrained eye will not straightforwardly or hastily notice the subtle 

visual indicators of the presence of a rip current like watery tones, wave patterns or even foam 

moving outwards together with seaweed or debris (see Figure 2).   

 

Figure 2  

Examples of rip current patterns (Automated Rip Current Detection, n.d.)  

 



 

 

The high incidence of rip currents poses a significant danger to the general public, as 

evidenced by information from the National Oceanic and Atmospheric Administration (Rip 

Currents, 2023). Rip currents were responsible for more than 80% of water rescue cases carried 

out by lifeguards across America in 2023. This means that approximately 90 out of 98 times 

someone had to be saved from drowning, it was due to rip currents (US Department of 

Commerce, n.d.). Moreover, the reports coming from Florida Panhandle reveal that rip tides 

cause 60 percent of the deaths around the Great Lakes thus demonstrating their fatal nature 

(Florida Panhandle, 2023).  

This magnifies the issue because rip currents can hardly be predicted making it difficult for 

people to spot them easily. It should also be remembered that they can form and disappear 

quickly hence giving no time for immediate warnings or closely monitoring all potential 

danger zones by beach safety staff. This unpredictability necessitates the need for efficient alert 

systems meant to protect members of the general public. 

Given these challenges, there is a pressing need for advanced technological solutions to aid 

in the identification and monitoring of rip currents. AI-based models integrated with drones, 

like the system we propose, offer a promising approach to enhance beach safety. By providing 

real-time, accurate detection of rip currents, such systems can alert both the public and 

lifeguards to potential hazards, thereby reducing the risk of accidents and saving lives. 

Literature review  

Hazard and Influence.  

Rip currents have been reported as the most hazardous safety risk to beachgoers 

(Rampal et al., 2022). In China, accumulated Chinese surf zone fatalities were reported more 



 

 

than marine disaster casualties over the recent ten years. The surf zone accident has a high 

occurrence frequency in the southern regions and peaks from July to August (Zhang et al., 

2021). In Australia, rip currents are responsible for more deaths than hurricanes, floods, and 

tornados combined (“Methodology for Prediction of RIP Currents Using a Three-Dimensional 

Numerical, Coupled, Wave Current Model,” 2011). Governments are concerned about the 

negative social and economic influence caused by the rip current. Many countries have 

established operational frameworks across various organizational levels on rip current 

prevention, including risk investigation, data-driven forecasting, beach safety improvement, 

and public awareness (Zhang et al., 2021). Despite warning signs and educational campaigns, 

many beachgoers and visitors still do not know how to reliably and efficiently identify and 

localize rip currents, and this coastal process still poses serious threats to beach safety (Pitman 

et al., 2021). This also extends to lifeguards, who, because of the oblique angle they observe 

the ocean, can struggle to identify certain rip currents, especially when the coastal morphology 

is complex. 

Recent Study  

As a public safety hotspot, the rip current has long been of great research interest in its 

mechanism, characteristics, and prediction. (Zhang et al., 2021b) Many practical approaches 

are adopted in the study of the rip current, such as scaled experiment, numerical simulation, 

remote image interpretation, onsite observation and measurement simulation, remote image 

interpretation, onsite observation and measurement (Castelle et al., 2016b). Owing to the 

intrinsic instability of the rip current, accurate prediction of its exact occurrence is not feasible 

at present (Zhang et al., 2021b).  



 

 

CNN and AI Predictions  

An interpretable AI was brought by the scientists to make predictions on and localize rip 

currents. They also emphasize some of the advantages of supervised learning using deep 

learning techniques such as Convolutional Neural Networks (CNNs) which are able to learn 

through experience, learn complex dependencies and features in order to get a set of model 

weights/parameters that give out maximum accuracy (Rampal et al., 2022).  

In short, rip currents indicate grave safety concerns. They influence beachgoers, coastal 

communities, and local governments profoundly. Recent studies mainly focused on hazards 

and social impacts while only a few provided plausible solutions towards severe problems 

caused by rip currents. 

While the use of interpretable AI and CNN is an effective and unique method for detecting 

and predicting rip currents, the authors failed to offer any guidance on how to apply this 

technique in practice. 

Methodology  

To address the problem of effectively detecting rip currents and enhancing beach safety, 

we developed an AI-based model integrated with drone technology. 

Data Acquisition and Preprocessing Pipeline 

Image Acquisition  

The first step is to collect a dataset of images representing near-shore conditions for 

training. A total of 2484 images, including scenarios of both rip currents (1781 images) and 



 

 

non-rip currents (703 images), were acquired from the database (Castelle et al., 2016b), 

provided by (de Silva et al., 2021), to build a reliable model for classifying rip currents. These 

images are high-resolution aerial images from Google Earth (Rampal et al., 2022). The 2484 

images were split into two parts. One, taking up 80% of the total dataset, was used as the 

training set. This part contains 1425 (contains rip currents) + 562 (no rip currents) = 1987 

images. The other part, which contains 356 (contains rip currents) + 141 (no rip currents) = 497 

takes up 20% and was used as testing set. No validation set was established due to the relatively 

limited amount of data. 

Data Augmentation  

In this study, we implemented a data augmentation pipeline to increase robustness and 

generalization of our neural network model. This is achieved through the diversity attained in 

the training dataset by applying various transformations on the original images hence 

generating new examples with additional manual labeling.  

Our augmentation strategy involves several techniques. First, we apply random rotations 

to the images by multiples of 90 degrees. This aids the model in identifying objects without 

considering their orientation. We also perform random cropping and resizing, which introduces 

variability in the scale and viewpoint of the images. Additionally, random horizontal flips are 

applied to the images to ensure that the model learns to identify features from both left and 

right perspectives. The process of augmentation was automated by a custom Python script 

utilizing OpenCV. A few examples of augmented images will be shown later. 

Four augmentations on training set with no rip currents and four augmentations on image 

dataset with rip currents were done. There are a total of 7948 images in the training set, which 

is calculated by multiplying 1986 by 4. 7948 (training set after augmentation) + 497 (testing set) 



 

 

= 8445 images were actually used in the model training.  

 

Table 1  
Training, testing, and rip current existence dataset detail 

 Training Testing Total 

With Rip Current 1425 356 1781 

With No Rips Current 562 141 703 

With 4 Augmentations 7948 497 8445 

 

  



 

 

Dataset Preparation  

Since the dataset has images with resolution varying from 234 ×234 to 1094 × 1322, after 

augmenting the images, it is essential to standardize them in order to maintain uniformity 

concerning input format for the model. The resizing process was done using OpenCV library 

and images were adjusted to a fixed resolution of 20 pixels by 20 pixels, gaining the advantage 

of lowering computational effort during training process of the model. Along with this, these 

images are turned into grayscale through OpenCV. Converting images into grayscale simplifies 

information content and reduces data into one channel. This sort of operation focuses on 

structural characteristics instead of color changes and makes learning more efficient and better 

model training possible.  

 

Figure 3  

Image of the rip current before and after the augmentation 

 

Note. On the left is the original image and on the right are three different images after 

augmentations and dataset preparation 



 

 

Preprocessing  

After that, every image was translated into a Comma-Separated Value (CSV) file so that 

the model could be trained. This stage required converting 2D array of pixel values into one 

row of CSV files. Each cell sequentially records the grayscale value of one pixel thus resulting 

in a 1-row sequence having 400 columns. In every row’s first column, labels were added which 

show if rip currents are there (1) or not there (0). The binary classification (labeling) of the 

training dataset has already done when we acquired the images. The machine learning model 

was trained using this binary classification to enable it to accurately differentiate between rip 

current and non-rip current.  

Model Training 

Model Selection  

In this project, we utilize Scikit-Learn Library’s MLPClassifier, which serves as a 

Multilayer Perceptron Classifier for our neural network model. The Multi-Layer Perceptron 

Classifier is highly fitting for this purpose because it can deal with complicated patterns and 

relationships within the data using artificial neural network principles. The option to choose 

MLPClassifier was based on its being tested in recognition tasks using images as well as its 

ability to optimize performance after adjusting these parameters (Gong, 2022; 

Sklearn.neural_network.MLPClassifier, n.d.).  

Architecture and training parameters  

The model’s architecture consists of a solitary hidden layer with 60 neurons. ReLU 

activation function was employed for hidden layer which nonlinearity reveals itself inside a 

web of complex patterns that emerge out of the given facts. The SoftMax activation function 



 

 

was imployed at output layer due to its excellent performance in classification tasks (Zhang et 

al., 2021).  

The model is trained with the ‘Adam’ optimizer which is an efficient version of stochastic 

gradient descent that adapts learning rate for each parameter (Gong, 2022; Kingma & Ba, 

2014). The learning rate for the ‘Adam’ optimizer has been established as 0.001. Optimizing 

this way means we are trying to minimize binary cross-entropy loss which makes it suitable for 

binary classification tasks. 

To ensure reproducibility, random_state = 1 is used as a random seed. The maximum 

number of iterations for the model training has been specified as 150, allowing weights to be 

updated through backpropagation until convergence or the iteration limit is reached.  

Figure 4  

Diagram illustrating the structure of the neural network, with number of nodes not accurately 

represented 

 



 

 

After conducting four augmentations on the testing image dataset inclusive of both rip 

currents and no rip currents, a combined total of 7948 augmented images were included in the 

training set.  

Result  

Performance Metrics  

When assessing the performance of our binary classification model, we have taken into 

account multiple important metrics, including accuracy, true negative rate(TNR), and true 

positive rate(TPR).These measures give a clear reflection on how well the model distinguishes 

between images that have rip currents from those that do not have them. 

The accuracy means the proportion of number of correctly classified instances over the 

that of total instances in the dataset. The accuracy of our model was 82.8% on the training set 

and 73.9% on the testing set. This indicates that even on unseen data our model performs 

relatively good, maintaining high accuracy levels from training through testing. 

The True Negative Rate (TNR) quantifies the percentage of true negative instances 

accurately classified by the model. The model reached a True Negative Rate (TNR) of 0.62 in 

our testing set. This indicates that 62% of the images lacking rip currents were accurately 

categorized. The True Positive Rate (TPR) calculates the percentage of true positives 

accurately identified by the model. On the testing set, the TPR was 0.75, indicating that 75% of 

the images with rip currents were correctly classified. 

  



 

 

 

Figure 5  

Examples of FP, TN, TP and FN classifications  

 

 

The time it took to train the model was also a crucial factor. The total time taken to train the 

model was 6.48 seconds, highlighting the efficiency of the training process. This quick training 

time is particularly advantageous when dealing with large datasets or when frequent model 

updates are required. This aspect will be further elaborated on in subsequent sections. Also, it 

takes only 25.97 milliseconds to run both of the training and the testing set, which is 3.09 

milliseconds only for 1000 images on average. This fast runtime ensures that the model can be 

used in real-time applications where rapid image classification is essential. 



 

 

Rip Current Classification System Integration with Drone  

Setting Confidence Threshold  

When it comes to implementing the rip current classification system, we considered tuning 

the confidence threshold to optimize the product of True Positive Rate (TPR) and True 

Negative Rate (TNR) in our subsequent research. With 0.75 initial TPR and 0.62 TNR, we tried 

to arrive at a threshold that could enhance overall model performance. 

To find the ideal threshold level, we calculated various TPRs, TNRs and measured TPR × 

TNR values. The objective was to determine the optimal point at which this product achieves 

the highest balance between true positive and true negative rates. In order to set a confidence 

threshold, one needs to calculate probabilities of n true positives or n true negatives occurring 

among α trials, then sum up all probabilities greater than n. That gives us both TPR and TNR 

values. If we wish to maximize them both then we must compare the value of TPR × TNR 

since they are equivalent in importance. We found out that by having n set at approximately 

0.69 × α, we get the highest value of TPR and TNR.

  



 

 

Table 2  

TPR, TNR and TPR time TNR values at different thresholds  

Positive 
accuracy   0.75 

True Postive 
Rate (TPR) 

Negative 
accuracy   0.62   

True 
Negative Rate 

(TNR) TPR × TNR 
trials (n) 100 probability   trials 100 probability n and above     

0  6.223E-61 0.955403675 0  9.5139E-43 0.128001035 0.871998965 0.833111015 
1  1.8669E-58 0.955403675 1  1.5523E-40 0.128001035 0.871998965 0.833111015 
2  2.7724E-56 0.955403675 2  1.2537E-38 0.128001035 0.871998965 0.833111015 
3  2.7169E-54 0.955403675 3  6.6818E-37 0.128001035 0.871998965 0.833111015 

... ...           
            
            

68  0.02475256 0.955403675 68  0.03900174 0.128001035 0.871998965 0.833111015 
69  0.03443835 0.930651111 69  0.02951161 0.088999295 0.911000705 0.847823818 
70  0.04575381 0.896212761 70  0.02132381 0.059487681 0.940512319 0.842899142 

... ...           
            
            

97  1.9208E-09 2.10817E-09 97  6.4574E-17 6.79068E-17 1 2.10817E-09 
98  1.764E-10 1.87408E-10 98  3.2252E-18 3.33325E-18 1 1.87408E-10 
99  1.0691E-11 1.10114E-11 99  1.0631E-19 1.08041E-19 1 1.10114E-11 

100   3.2072E-13 3.2072E-13 100   1.7345E-21 1.73448E-21 1 3.2072E-13 

Note. Only a part of the table was shown due to space limitation. Full table could be freely 

accessed at https://github.com/MickeyYQA/rip_current-appendix (accessed on June 30, 

2024).  

Figure 6  

Line chart - TPR times TNR values at different confidence threshold
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From the analysis presented in the table above, the TPR and TNR values were computed 

for different confidence levels. The product of TPR and TNR was used as the benchmark to 

evaluate the performance at each threshold. As shown in the table, the threshold of 69 trials 

yielded the highest TPR × TNR value of 84.78%, with a corresponding TPR of 93.06 % and 

TNR of 91.10 %. This indicates that at this threshold, the model achieves a near-optimal 

balance between correctly identifying images with and without rip currents. 

Given that TPR is 93.06% while TNR is 91.10% under the 0.69 confidence threshold, the 

overall performance accuracy could be calculated. By referring to the formula   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  (𝑇𝑇𝑇𝑇𝑇𝑇 ×
𝑃𝑃

𝑁𝑁 + 𝑃𝑃
) + (𝑇𝑇𝑇𝑇𝑇𝑇 ×

𝑁𝑁
𝑁𝑁 + 𝑃𝑃

) 

we will get the TPR = 0.9306, TNR = 0.9110, P (Positive dataset size) = 1781, N (Negative 

dataset size) = 703, we finally got the overall accuracy under the confidence threshold of 0.69:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  (0.9306 × 0.7169) + (0.9110 × 0.2830)  =  0.9249 

Furthermore, after comparing the result of different α values, we decided to set it to 100, which 

gives us a high classification accuracy and low classification interval of around 1.3 seconds. 

This means that the drone could classify 100 images in 1.3 seconds to get one result with 

accuracy of 92.49 %. This time interval was got by testing in real situations w

  



 

 

 

Figure 7 

Sketch of the process of drone integration. 

 

 

Real-time Image Transmission  

In addition to the implementation of AI, our team has also decided to use drone for the 

coastline footage. With the usage of drone taking footage from the air, we can achieve a 

real-time detection along the coastline and cover much more area. By doing this research, we 

built a system that can actively and reliably detect rip currents along coastlines to prevent 

fatalities happening due to the rip currents.  

In our research, the model was integrated with the drone to demonstrate the flexibility and 

adaptability of this approach. Since this rip current classification system was integrated with 

the “Tello Talent Robomaster TT” drone, real-time image transmission capabilities were 

established using the features of the Tello drone development kit. This was achieved by 

communicating using UDP (User Datagram Protocol) which allowed the drone’s camera to 

send live videos to a computer (RoboMaster TT - Specifications - DJI, 2024). Low latency 



 

 

transmissions that are essential for real time processing and classification provided by UDP.  

Image Preprocessing  

The images of the camera of the drone were resized to 10x10 pixels and converted to gray 

scale in order to match them with training data. The test set was expected consist of pictures, 

whose dimensions or format were not changed for accurate predictions when applied in a 

real-world scenario. 

Model Inference  

Processed images such as these ones are passed through a pre-trained ANN model to detect 

rip currents. These images processed will be fed into this model at inference time and outputs 

which indicate whether it might lead to rip current events or not. Thus, seamlessly integrating 

live video streams would enable instant feedback on possible dangerous issues, such as rip 

currents. 

Enhancing Prediction Accuracy  

In an effort to make more accurate predictions of rip currents, a customized method was 

designed and implemented. The function predicts rip current presence multiple times for every 

image and then combines the answers to create better concepts as well as more reliable results. 

Precisely, each image is subjected to 100 predictions by the model. Where 69 or more of these 

predictions indicate that there is a rip current, the system confirms this fact. This confidence 

threshold empirically achieved a balance between sensitivity and specificity based on initial 

analysis.  



 

 

Result Display  

To display immediate and clear feedback in relation to the classification outcomes, we 

created a graphical user interface using OpenCV. If it detects a rip current (which means it has 

made 100 predictions where the confidence levels are higher than 82%), then this interface will 

pop-up a window displaying "RIP CURRENT" with a red background if a rip current is being 

classified, and "SAFE" with green background color in case no rip current is being classified.   

 

Figure 8  

Rip currents classification user interface demonstration 

 

Note. Image above demonstrates the GUI where the camera data received from the drone is 

shown, and the true prediction of that rip current exists is shown on the left, while the true 
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prediction of that rip current does not exist is shown on the right. This screen capture shows the 

real user interface being tested, not a simulated demonstration.  

Testing and Validation Methodology  

The integrated system underwent comprehensive testing and validation through the use of 

simulated and real-world test scenarios. Simulated testing was done through controlled 

conditions whereby pre-recorded images and video feeds were utilized to check that the system 

functioned well or not. But we are unable to test its performance in real beach environments 

due to some external limitations. 

Discussion and Conclusion 

Methods Comparison 

The database we used was sourced from previous research conducted by de Silva et al. 

(2021) and his colleagues. It is a large dataset with many pictures and videos, randomly 

containing rip currents which can be used to train the artificial intelligence module. The former 

work Rampal et al. (2022) used CNN and Interpretable AI that were employed in classifying 

and localizing rip currents. Both these two techniques have an improving effect on the overall 

prediction rate. Additionally, Interpretable AI has the capability of identifying waves in videos 

or images making predictions more intuitive. 

However, when this model is deeply trained with available data, it makes CNN module 

highly dependable. This implies that it has the ability to learn intricate patterns and features at 

high accuracy. In another study, Faster R-CNN was combined with custom temporal 

aggregation phase for efficient recognition of rip currents within a defined area. These 
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technologies have been previously applied in other studies and achieved impressive results. 

Nevertheless, there are still limitations in these approaches. CNN method needs costly 

hardware as well as huge amounts of data for training the AI system. Therefore, it makes this 

process more complex hence making it slow to proceed effectively. 

On the other hand, our program employed modules that were quite efficient relative to the 

earlier one. Also, our programs afford relatively good detection of rip currents. The previous 

study by Rampal et al. (2022) had an accuracy rate of 89% using their test videos, while our 

modules initially gave 74% on testing sets but rose to 93% after adjusting confidential 

threshold. 

Contrastingly, the work of de Silva et al. (2021) achieved a total accuracy of 98% but 

framing during detection is a requirement for the method hence making it inflexible and less 

effective during detection. In addition, this method is not capable real-time operation and often 

times doesn’t fit well with mobile devices as opposed to our programs which can be used on 

drones promptly. 

Our program has several advantages over current methods discussed in previous studies. 

That said, there are few limitations in relation to our method. Our systems have never been 

tested under actual conditions such as those near sea shores or beaches. This might be a 

significant factor because wind and rain could affect the field of view of cameras due to bad 

weather situations among others. Furthermore, we employed drones with restricted altitude and 

flight range in this research project, with the exception of using drones with limited flight 

distances, which are essential for assessing the detection area’s dimensions. 
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Conclusions 

Our study utilizes visual images and videos from the “Tello Talent Robomaster TT” drone 

for rip current detection. Data acquisition and preprocessing algorithm got 2484 nearshore 

condition images in the system and data augmentation got 7948 images for training. These 

images were then adjusted to 400 pixels and converted to grayscale. For module training, we 

employed MLP algorithms having an architecture with one hidden layer of 60 neurons and 

‘Adam’ solver for training. 

Likewise, numerous other studies have also used AI to detect rip currents along coastal 

areas. However, they either have to make a bounding box in the pictures or they are not 

accurate enough. The demand for making bounding boxes highly affected the diversity of 

videos that in turn influenced the flexibility of our method overall. 

The method presented addresses these limitations and provides a mobile way of detecting 

rip currents. After carefully weighing the results of the individual tests, we achieved an 

accuracy of 74% on testing data and 93% after adding a confidential threshold. Although this 

accuracy is lower than that of the study presented by de Silva et al. (2021), it’s relatively more 

flexible than other previous studies. Aside from that, drones are employed to further test the 

viability of the method. The outcome, although not tested in real scenes, is expected to be 

similar to the initial accuracy based on the videos in the database.   

Future Prospects  

The present study looks forward to promoting the practicability of this method further after 

its presentation here. To test if drones can be used in coastal areas, drone will be used on nearby 

coastline while assessing environmental factors for detection purposes. This is because the 
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quality captured by these records may easily be marred by wind and rain conditions. 

Collaborating with the local government and passing information to lifeguards would be 

another way of using an alert mechanism to alert beachgoers and tourists in case rip currents 

occur. The program’s interface will also be modified so as to enable users have access to real 

time rip current information and safety results through mobile applications and web platforms. 

The other thing is that the development of advanced image processing techniques for 

extracting more informative features from live video feed can be examined to improve upon 

the accuracy of rip current detection in the future. 

Data Availability Statement 

The data utilized for training the AI-driven model can be freely accessed at the following link: 

https://sites.google.com/view/ripcurrentdetection/download-data (accessed on June 30, 2024), 

provided by de Silva et al. (2021). Moreover, the code mentioned in this paper is available for 

free download at https://github.com/MickeyYQA/rip_current_detection (accessed on June 30, 

2024).         
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